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Abstract. Bayesian surface modeling from images requires modeling both the surface and the 
image generation process, in order to optimize the models by comparing actual and generated 
images. Thus it differs greatly, both conceptually and in computational difficulty, from conventional 
stereo surface recovery techniques. But it offers the possibility of using any number of images, taken 
under quite different conditions, and by different instruments that provide independent and often 
complementary information, to generate a single surface model that fuses all available information. 

I describe an implemented system, with a brief introduction to the underlying mathematical 
models and the compromises made for computational efficiency. I describe successes and failures 
achieved on actual imagery, where we went wrong and what we did right, and how our approach 
could be improved. Lastly I discuss how the same approach can be extended to distinct types of 
instruments, to achieve true sensor fusion. 
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SuperRes is a system for inferring super resolved 3-D surface models from multiple 
images taken from diverse viewpoints and under diverse lighting. The project’s primary 
objective was to show that, from such an image set, it is possible to accurately infer 
3-D surface properties at a scale smaller than the projected pixel footprints. This was 
achieved, albeit to a limited extent, using CMOS camera images of a known physical 
surface. The project’s significance lies in having successfully demonstrated that the 
combination of generative modeling driven by Bayesian Inference can be made to work 
in this context, and in identifying the problem areas that must be addressed to make such 
systems work well. 

The SuperRes project was conceived and led by Peter Cheeseman, with initial de- 
velopment by Robin Morris. Robin Morris, Vadim Smelyanskiy and David Maluf de- 
signed and implemented the current program, carried out the initial tests on synthetic 
data, and wrote most of the descriptive papers. Frank Kuehnel and Udo von Toussaint 
tracked down and corrected some particularly nasty bugs that first surfaced with real im- 
ages, while also elucidating several fundamental aspects of the representation. Working 
in parallel, Andre Jalobeanu developed a renderer capable of correctly handling occlu- 
sions, which has yet to be incorporated into the system. The author’s contribution was 
largely limited to making the minimal extensions needed to represent a real camera, col- 
lecting suitable data, and devising the protocols needed to demonstrate super-resolved 
surface inference. 

Full details of the underlying models, the rendering and derivative computations, 
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and the optimization methods, are given in [l, 2, 3, 4, 5, 61 with [7] the best detailed 
exposition. This paper provides only a6 overview of the modeling and inference process, 
and concentrates on our efforts to apply the initial system to real data, the modifications 
needed to accomplish this, some results, and the lessons learned. 

SuperRes System 
Figure (1) illustrates the basic modeling problem for inference from imagery. From 

processed input images, we seek to infer as much as possible about the imaged surface. 
In addition to the unknown surface, there are potential uncertainties in the illumination, 
reflection, transmission, camera poses, camera projection, sensor response, digitization, 
and post processing. Depending on the specific application, some of these may be 
ignored, and others may be fixed by calibration. The remainder must be modeled, 
inferred, and preferably marginalized out the final result. 

FIGURE 1. Overview of the modeling problem for remote sensing imagery. 

Initially intended for extraterrestrial remote sensing, SuperRes modeled the remote 
surface as a triangulated mesh over a static rectangular grid of height field vertices 2. 
Monochrome albedos p’ were assigned to the vertices, and triangle albedos averaged 
over the vertex albedos. We initially assumed that viewing conditions precluded both 
occlusions and shadows. Illumination was by a single infinity distant point source 
(sun), supplemented by uniform ambient light. Reflectance was taken to be Lambertian. 
Atmospheric effects were assumed to be negligible. Images were described by 6-DoF 
camera pose and specific illumination. Cameras were described by focal length, and 
sensor array dimensions. Purely geometric perspective projection was assumed, with 
the camera optical axis centered on and perpendicular to the sensor array. Sensor array 
elements were assumed to tile the image plane, and hiwe iiiii~jlii !hear response to 
incident light. No provision was made for A/D conversion or post processing. 

Height fieId vertices were then projected to the image plane and the precise overlap 
areas between projected triangles and pixels were determined. Thus the triangle energies 
radiated through the camera lens were allocated to the sensor elements in proportion to 
the intersectieii seas. Stmimiag the trizngle contSxtions tc each piixel thee giws the 
rendered image. In essence, we implemented a textbook model of a chip based imager. 
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The paired vectors of heights and albedos u = [? $1 form our full surface model. Their 
prior distribution is assumed to be Gaussian: 

where the inverse covariance matrix C is constructed to enforce a smoothing constraint 
on local variations of heights and albedos. We penalize the integral over the surface of the 
curvature factor c(x, y) = & + z& + 2z2 and similarly for albedos. We approximate the 
partial derivatives in c(x, y) using finite dlfferences of the height (albedo) values. The two 
hyper-parameters oh and op in equation (1) control the expected values of the surface- 
averaged curvatures for heights and albedos. Since albedos are conceptually limited to 

Our likelihood assumes that the differences between observed and synthesized pixels 
are conditionally independent, with a zero mean Gaussian distribution. The negative 
log-posterior is then: 

TI 

- the 0-1 range, we actually apply this prior to the Log-Odds transformed albedos. 

where ff, (2, $ ) denotes the pixel intensities in the image f synthesized from the model, 
0: is the noise variance and the summation is over the pixels ( p )  and over all images (f) 
used for the inference. Vector x = u - uo is a deviation from a current estimate UO. 

In the initially assumed absence of shadows and occlusions the log-posterior is in 
general unimodal and gradient methods can be applied for minimizing L(Z,p'). We 
linearize f(2, $ ) about the current estimate, 20, p'o 

where D is the matrix of derivatives evaluated at ZO, PO. Then the minimization of L(Z, p')  
is replaced by minimization of the quadratic form: 

(4) 
1 *  
2 

L' = -xAx- bx, 

Here A is the Hessian matrix of &e quadratic form and vector b is the gradient of the 
likelihood L computed at the current estimate. We search for the minimum in x using a 
conjugate-gradient method. At the minimum we update the current estimate, u1= uo +x, 
recompute f and D, and repeat the minimization procedure iteratively until the current 
estimate uk approaches the minimum of L(?, f i  ). 

inus finding the ivikr" estimate requires tkat w-e can render the image and c~ijiputs 
the derivatives w.r.t. the surface model parameters. While generating f via the modeling 
approach is computationally expensive, we can compute D at the same time for little 

. 
mr 
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additional effort. It helps that D is sparse, and becomes extremely so when triangle area 
is less than pixel footprint area. 

The same approach is applied to the inference of camera and lighting parameters. 
Here the small number of parameters, of order 10 per image, is balanced by the fact that 
each influences essentially all of the image’s pixels, giving a dense D matrix. When both 
surface and image parameters must be inferred, we alternate between the two, starting 
with a coarse surface mesh and successively refining it. 

SuperRes Results 
Early end to end testing, using synthetic data prepared with the camera model, gave 

remarkably satisfying results [l, 2, 71. A digital surface model was constructed fi-om a 
Geological Survey digital elevation model and textured with albedos fiom a correspond- 
ing Landsat image. With 16 low-resolution synthetic images, known camera positions 
and lighting, and inference starting from a fiat medium gray plain, the inferred RMS 
height and albedo errors were of order of the respective parameter ranges, on a 
surface modeled to half the pixel footprint spacing. Similar results were obtained on the 
task of inferring camera pose [8,4]. 

However these excellent results merely proved that the inference system was work- 
ing, and nothing about the ability of our camera model to match any specific real camera. 
Initial tests with scanned film camera and CCD camera images were complete failures. 
Switching to a CMOS camera, with its, intrinsically cleaner response, gave no improve- 
ment. The problems were eventually traced to a combination of conceptual and imple- 
mentation errors in the camera model. 

Camera model implementation errors were of two types. The first were outright 
programming errors that were eventually tracked down and corrected. The second was 
more subtle, the assumption that the rules of arithmetic translate precisely into floating 
point arithmetic. This is only true for numbers of comparable magnitude. In our line 
and area intersection calculations we were caught out in assuming that the summed 
area of projected triangle intersections with a pixel must equal the pixel area. They did 
not, quite, and the resulting numerical noise was significant, and had to be explicitly 
compensated. 

Camera model conceptual errors were much more serious. These were also dual. First, 
the camera model made no allowance for the optical misalignments and distortions that 
are inevitable in real cameras. Second, there was essentially no attempt to model the 
analog to digital conversion and output conditioning that convert incident light to a 
digital image. In essence, our textbook model was too simple to adequately describe 
real images. 

%spite these errors, the basic approach proved suEcient!y rgbust to givs usefd re- 
sults after minimal modification. Adding off center projection and a linear output scal- 
ing proved sufficient to allow inference of reasonably shaped surfaces. Optical distor- 
tions were compensated by using Bouguet’s Camera Calibration Toolbox [9] to gener- 
ate undistorted projective images. In retrospect, this last was a mistake. We should have 
added the distdctns te c x m a  ~ ~ e d e l ,  even if we did not seek to esthate the pa- 
rameters. These “undistorted” images are generated by resampling, which systematically 
distorts the pixels’ numerical values. 
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Having obtained encouraging qualitative results from our CMOS images, we sought 
to quantify them. To this end, we had a 0.5m square surface model machined from 
a 300x300 point DEM. This has been sub-sampled from a USGS DEM, smoothed and 
vertically exaggerated by 5x, to get a semi-natural topographic surface with about 4 3 m  
height range. The source region includes several mountain ranges and level basins. 
This surface model was mounted on a 1. l m  square checkerboard. When exposures 
included the full checkerboard, Bouguet’s Calibration Toolbox [9] could determine 
camera pose and internal parameters to fair precision. A simple sundial gave reasonable 
initial estimates of sun direction. The whole was of a size that permitted it being moved 
outdoors for exposures under tmly directional sun light and reasonably uniform ambient 
light. The only real problem was that camera positions were limited to within about 20 
degrees of nadir, by the exaggerated topography, under our assumed absence of shadows 
and occlusions. Nor could we obtain images from near the sun direction, due to camera 
or tripod shadows on the model. 

FIGURE 2. 
board and the sun dial used for sun calibration. 

One of the 16 CMOS images used in our constant albedo experiment, showing the checker- 

a 

FiGUiG3 3. SuperRes resuirs for the monochrome mociek height iieid showing origins; topography(a) 
and estimated geometry model(b). The units are millimeters. Started from a flat surface at - 65mm 
elevation, using 5-step multi-grid. 

Initial experiments were made with the surface model painted a uniform matte gray. 
Figure(2) shows a typical image, and figures(3, 4) compare the known and inferred 
surfaces obtained using i6  such images. This was actieved with a 5 step r1Ultif5lld 
inference, working from 37x37 to 577x577 vertices, to avoid local minima. the starting 
point was a uniform gray level surface at approximate average elevation. Camera and 
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FIGURE 4. SuperRes results for the monoch;ome model: contour plot showing original topography(a) 
and estimated geometry model(b). The contours at 5mm intervals. Started from a flat surface at - 65mm 
elevation, using 5-step multi-grid. 

lighting parameters were re-estimated prior to the last step, which vastly improves the 
surface estimates per [2]. The inference converged to an estimate that is close to the 
original model, with a maximum error less than ljmm, with a 2m distance between 
camera and model. 

Ti7c;rURE 5. 
field(b) inferred from a uniform 0.5 albedo and flat surface. 

SuperIces with albedo variations: an original image(a> and a Matlab plot of the albedo 

We made extensive experiments with the same physical model after adding albedo 
patterns( Fig. 5), experimenting with a number of variations of the basic surface in- 
ference / camera inference multigrid protocols. The albedo and height fields shown in 
figures 5 and 6 are typical of our better results. Tle hcerred s-dace ge~aeiqy shm-3 
RMS errors between 1 and 2mm, and maximum errors usually less than l o r n ,  which is 
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better than in the constant albedo case. The inferred albedos, while visually acceptable, 
cannot be quantified, since we lack quantitative ground truth. 

FIGURE 6. SuperRes inferred model with albedo variation. Peaks are somewhat flattened. Xnference 
started with a flat surface and uniform albedo, achieving RMS height errors of < 2 m ,  l0mm max error, 
with cameras 2m distant. 

The albedo texture helps to recover the topography. However there is clearly some 
cross talk between albedos and geometry: slopes are influenced by the rate that albedo 
changes. Thus the linear albedo features tend generate channels or ridges, depending on 
contrast, in what should be level surfaces. This is believed due to our use of the curvature 
term in our surface priors. There are several possibilities for alleviating this problem, but 
none have yet been investigated in detail. 

Sixteen images proved sufficient to recover a good surface, starting from a uniform 
albedo plain surface at the known mean elevation. These images were well distributed 
w.r.t camera positions and rotations and sun directions, with camera poses known to 
-1% of distance, and sun direction to -i degree. Starting from a 37x37 height grid 
with uniform albedo, most details of the 289x289 known height grid are recovered with 
only 4 images. Most distortions can be attributed to cross-tdk between the albedo and 
height fields where true albedos are rapidly changing. 

Potential Extensions 
There is nothing about this approach to surface modeling that limits it to a single 

camera. One could use several cameras, and simply adjust the parameters for each. 
One could even used quite distinct types of cameras, by providing appropriate camera 
models. Nor is there any intrinsic limitation to visual data. So long as an instrument 
records radiation h t ,  has interzWed with the surface, and one can model both that 
interaction and the instrument, then this approach can be used to make inferences about 
the surface. Most significantly, when two such instruments record interactions with the 
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same surface property, then their data can be jointly used to make common inference 
about that property, an example of model based data fusion. 

Lidar provides a obvious complement to remote visual data. While vision gives fine 
angular discrimination, depths must be inferred. Lidar gives fine depth discrimination 
at relatively coarse angular spacing. Combined, the two should compensate for each 
other’s deficiencies. Morris [3] has experimented with this. Using very simple synthetic 
‘lidar data to supplement synthetic visual data, he was able to recover excellent surface 
shape and albedo using only two images. Thus the lidar data greatly reduced the number 
of images needed to achieve comparable results with pure visual data. 

Lessons Learned 
First, inference is only as good as good as the model. We initially concentrated on 

achieving reliable and efficient inference. When we got it, we found that we had only 
solved half of our problem, since our camera model was too simple to match any real 
instrument. The data generating model must capture all significant factors that influence 
the data values. 

Second, know your data. Second party data that has been subject to undocumented 
processing is particularly suspect, as we found to our great frustration, in atempting to 
use Mars Rover imagery. 

Third, be wary of numerical results. Floating point is a sparse representation of the 
real numbers, calculations only approximate algebra, and approximations are applied at 
every step of a calculation. With large scale calculations, it can be folly to attempt to 
save time and space by shorting the precision of calculations. 

I 
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